
A new cryptographic hash function

based on the Cellular Automaton Rule 30

Enrico Zimuel (ezimuel@sci.unich.it)

Departimento di Scienze - University "G.D’Annunzio"  Chieti-Pescara (Italy)

Abstract:

New cryptographic  hash  functions based  on cellular automaton  have been proposed  in the last 

years [1,2]. Most of this algorithms are based  on the well-known  Merkle-Damgård construction 

[3,4]. I investigated  the possibility to use a complete different approach  in order to generate  

new cryptographic hash functions  with the use of simple cellular automaton  in the spirit of NKS 

("Simple rules can produce complex behavior" S.Wolfram). In order to prove the quality of the 

proposed  cryptographic  hash functions i used the standard Avalanche and Collision Tests [1,2].  

Results: 

Results of the conducted experiments have shown  that it’s possible  to use simple cellular 

automaton  like the 2 colors cellular automaton with rules 30 in order to produce good 

cryptographic  hash functions.

Introduction



Introduction

A hash function H is a transformation that takes a variable-size input m and returns a fixed-size

string,which is called the hash value h (that is, h=H(m)).Hash functions with just this property

have a variety of general computational uses,but when employed in cryptography the hash func-

tions are usually chosen to have some additional properties.

The basic requirements for a cryptographic hash function are:

- the input can be of any length,

- the output has a fixed length,

- H(x) is relatively easy to compute for any given x,

- H(x) is one-way,

- H(x) is collision-free.

A hash function H is said to be one-way if it is hard to invert,where "hard to invert" means that

given a hash value h,it is computationally infeasible to find some input x such that H(x)=h. If,

given a message  x, it is computationally infeasible to find a message y not equal to x such that

H(x)=H(y) then H is said to be a weakly collision-free  hash function. A strongly collision-free

hash function H is one for which it is computationally infeasible to find any two messages  x and y

such that H(x)=H(y).



Applications of cryptographic hash functions

A typical use of a cryptographic hash would be as follows: Alice poses to Bob a tough math prob-

lem and claims she has solved it. Bob would like to try it himself,but would yet like to be sure that

Alice is not bluffing.Therefore, Alice writes down her solution,appends a random nonce,computes

its  hash and tells  Bob  the hash value (whilst  keeping the solution secret).This way,when Bob

comes up with the solution himself a few days later, Alice can verify his solution but still be able to

prove that she had the solution earlier.In actual practice, Alice  and Bob will often be computer

programs,and the secret would be something less easily spoofed than a claimed puzzle solution.-

The above application is called a commitment  scheme.

Another important application of secure hashes  is verification of message integrity. Determina-

tion of whether or not any changes have been made to a message (or a file),for example,can be

accomplished  by  comparing  message  digests  calculated  before,and  after,transmission  (or  any

other event). A message digest can also serve as a means of reliably identifying a file.

A related application is password verification. Passwords  are usually not stored in clear text,for

obvious reasons,but instead in digest form. To authenticate a user,the password presented by the

user  is  hashed  and  compared  with  the  stored  hash.  For  both  security  and  performance

reasons,most  digital  signature  algorithms  specify  that  only  the  digest  of  the  message  be

"signed",not  the entire message. Hash functions can also be used in the generation  of pseudo-

random  bits.



A family of hash function

H HmL = 8h1, ..., hn<, hj = Å

ÈmÈ

i=1

CA Hr, m, jL

CA Hr, m, jL = Last@CellularAutomaton@r, m, jDD
where  m is the input, H(m) is the output of the hash function, n is the length of

the hash function, and r is the rule of the CA.

The Mathematica code:

hashCA@rule_, text_, len_D :=

HBitXor ��� CellularAutomaton @rule, text, lenDL@@2 ;; len + 1DD

Why  I  used  the  CA  rule  number  30  in  my  tests?

- the rule 30 produces pseudo-random numbers;

- the rule 30 is not reversible;



 

Example

m = 80, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0<

n = 16, È m È = 32, r = 30 Hrule of the CAL, H HmL = 81, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0<

 H =



Testing the "security" of the hash function

In cryptography, the Avalanche effect refers to a desirable property of cryptographic algorithms,

typically block ciphers and cryptographic hash functions. The avalanche effect is evident if, when

an input is changed slightly (for example, flipping a single bit) the output changes significantly (eg,

half the output bits flip). The Strict Avalanche Criterion (SAC) is a property of boolean functions

of relevance in cryptography. The SAC builds on the concepts of completeness and avalanche and

was introduced by Webster and Tavares in 1985. Definition: a function is said to satisfy the strict

avalanche criterion if, whenever a single input bit is complemented, each of the output bits should

change with a probability of one half.

Test the avalanche effect of the hashCA:

sigma@x_, y_D := Mean@BitXor@x, yDD
changeOneBit@a_D := Table@BitXor@a, IntegerDigits@2^Hi - 1L, 2, Length@aDDD, 8i, Length@aD<D
avalanche@t_, len_, num_D := Table@sigma@hashCA@30, t@@iDD, 128D,

hashCA@30, changeOneBit@t@@iDDD@@jDD, 128DD, 8i, 1, num<, 8j, 1, len<D
I generated  1000 random inputs of 128 and 256 bits and for each of these inputs i generated  all

the possible pairs of inputs with only one bit of difference.

length mean standard deviation variance min max

128 0.500 0.044 0.002 0.312 0.679

256 0.499 0.044 0.002 0.312 0.703



Random inputs of 256 bit (1000 values)    HashCA output of 128 bit (1000 values)
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Collision Test

findCollision@h_D := 8ð @@1, 1DD, Last �� ð < & ��
Select@Split@Sort@Table@8h@@iDD, i<, 8i, Length@hD<DD, ð @@1DD � ð2@@1DD &D, Length@ð D > 1 &D

m = Table@Table@Random@IntegerD, 832<D, 82^16<D
h = Table@hashCA@30, m@@iDD, 128D, 8i, 1, 2^16<D;

I generated  65536 hash codes of 128 bit from 65536 different inputs of 32 bit. I discovered  only 8 collisions

with the CA rule number 30. Moreover  i investigate  the possibility  to use different CA rules for the generation of

the hashCA. These are the results over 65536 different random inputs of 32 bit.

CA Rules 22 30 45 54 73 75 86 89 101 110 122 124 126 135 137 149

Collisions 9466 8 9 4972 31401 9 8 10 20 630 11579 646 35951 18 634 18



A nice application

What’s  the hash code of the Monna Lisa (or La Gioconda)?

m = hashCA@30, Flatten@IntegerDigits@Import@"monnalisa.jpg", "RawData"D, 2D, 128D;

m = H HmL = 4 619 125 044 072 654 358 130 582 367 647 205 982
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