
A new cryptographic hash function

based on the Cellular Automaton Rule 30

Enrico Zimuel (ezimuel@sci.unich.it)

Departimento di Scienze - University "G.D’Annunzio" Chieti-Pescara (Italy)

Abstract:

New cryptographic hash functions based on cellular automaton have been proposed in the last

years [1,2]. Most of this algorithms are based on the well-known Merkle-Damgård construction

[3,4]. I investigated the possibility to use a complete different approach in order to generate

new cryptographic hash functions with the use of simple cellular automaton in the spirit of NKS

("Simple rules can produce complex behavior" S.Wolfram). In order to prove the quality of the

proposed cryptographic hash functions i used the standard Avalanche and Collision Tests [1,2].

Results:

Results of the conducted experiments have shown that it’s possible to use simple cellular

automaton like the 2 colors cellular automaton with rules 30 in order to produce good

cryptographic hash functions.

Introduction

Introduction

A hash function H is a transformation that takes a variable-size input m and returns a fixed-size

string,which is called the hash value h (that is, h=H(m)).Hash functions with just this property

have a variety of general computational uses,but when employed in cryptography the hash func-

tions are usually chosen to have some additional properties.

The basic requirements for a cryptographic hash function are:

- the input can be of any length,

- the output has a fixed length,

- H(x) is relatively easy to compute for any given x,

- H(x) is one-way,

- H(x) is collision-free.

A hash function H is said to be one-way if it is hard to invert,where "hard to invert" means that

given a hash value h,it is computationally infeasible to find some input x such that H(x)=h. If,

given a message x, it is computationally infeasible to find a message y not equal to x such that

H(x)=H(y) then H is said to be a weakly collision-free hash function. A strongly collision-free

hash function H is one for which it is computationally infeasible to find any two messages x and y

such that H(x)=H(y).

Applications of cryptographic hash functions

A typical use of a cryptographic hash would be as follows: Alice poses to Bob a tough math prob-

lem and claims she has solved it. Bob would like to try it himself,but would yet like to be sure that

Alice is not bluffing.Therefore, Alice writes down her solution,appends a random nonce,computes

its hash and tells Bob the hash value (whilst keeping the solution secret).This way,when Bob

comes up with the solution himself a few days later, Alice can verify his solution but still be able to

prove that she had the solution earlier.In actual practice, Alice and Bob will often be computer

programs,and the secret would be something less easily spoofed than a claimed puzzle solution.-

The above application is called a commitment scheme.

Another important application of secure hashes is verification of message integrity. Determina-

tion of whether or not any changes have been made to a message (or a file),for example,can be

accomplished by comparing message digests calculated before,and after,transmission (or any

other event). A message digest can also serve as a means of reliably identifying a file.

A related application is password verification. Passwords are usually not stored in clear text,for

obvious reasons,but instead in digest form. To authenticate a user,the password presented by the

user is hashed and compared with the stored hash. For both security and performance

reasons,most digital signature algorithms specify that only the digest of the message be

"signed",not the entire message. Hash functions can also be used in the generation of pseudo-

random bits.

A family of hash function

H HmL = 8h1, ..., hn<, hj = Å

ÈmÈ

i=1

CA Hr, m, jL

CA Hr, m, jL = Last@CellularAutomaton@r, m, jDD
where m is the input, H(m) is the output of the hash function, n is the length of

the hash function, and r is the rule of the CA.

The Mathematica code:

hashCA@rule_, text_, len_D :=

HBitXor ��� CellularAutomaton @rule, text, lenDL@@2 ;; len + 1DD

Why I used the CA rule number 30 in my tests?

- the rule 30 produces pseudo-random numbers;

- the rule 30 is not reversible;

Example

m = 80, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0<

n = 16, È m È = 32, r = 30 Hrule of the CAL, H HmL = 81, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0<

 H =

Testing the "security" of the hash function

In cryptography, the Avalanche effect refers to a desirable property of cryptographic algorithms,

typically block ciphers and cryptographic hash functions. The avalanche effect is evident if, when

an input is changed slightly (for example, flipping a single bit) the output changes significantly (eg,

half the output bits flip). The Strict Avalanche Criterion (SAC) is a property of boolean functions

of relevance in cryptography. The SAC builds on the concepts of completeness and avalanche and

was introduced by Webster and Tavares in 1985. Definition: a function is said to satisfy the strict

avalanche criterion if, whenever a single input bit is complemented, each of the output bits should

change with a probability of one half.

Test the avalanche effect of the hashCA:

sigma@x_, y_D := Mean@BitXor@x, yDD
changeOneBit@a_D := Table@BitXor@a, IntegerDigits@2^Hi - 1L, 2, Length@aDDD, 8i, Length@aD<D
avalanche@t_, len_, num_D := Table@sigma@hashCA@30, t@@iDD, 128D,

hashCA@30, changeOneBit@t@@iDDD@@jDD, 128DD, 8i, 1, num<, 8j, 1, len<D
I generated 1000 random inputs of 128 and 256 bits and for each of these inputs i generated all

the possible pairs of inputs with only one bit of difference.

length mean standard deviation variance min max

128 0.500 0.044 0.002 0.312 0.679

256 0.499 0.044 0.002 0.312 0.703

Random inputs of 256 bit (1000 values) HashCA output of 128 bit (1000 values)

200 400 600 800 1000

2*^76

4*^76

6*^76

8*^76

1*^77

200 400 600 800 1000

5.0*^37

1.0*^38

1.5*^38

2.0*^38

2.5*^38

3.0*^38

Collision Test

findCollision@h_D := 8ð @@1, 1DD, Last �� ð < & ��
Select@Split@Sort@Table@8h@@iDD, i<, 8i, Length@hD<DD, ð @@1DD � ð2@@1DD &D, Length@ð D > 1 &D

m = Table@Table@Random@IntegerD, 832<D, 82^16<D
h = Table@hashCA@30, m@@iDD, 128D, 8i, 1, 2^16<D;

I generated 65536 hash codes of 128 bit from 65536 different inputs of 32 bit. I discovered only 8 collisions

with the CA rule number 30. Moreover i investigate the possibility to use different CA rules for the generation of

the hashCA. These are the results over 65536 different random inputs of 32 bit.

CA Rules 22 30 45 54 73 75 86 89 101 110 122 124 126 135 137 149

Collisions 9466 8 9 4972 31401 9 8 10 20 630 11579 646 35951 18 634 18

A nice application

What’s the hash code of the Monna Lisa (or La Gioconda)?

m = hashCA@30, Flatten@IntegerDigits@Import@"monnalisa.jpg", "RawData"D, 2D, 128D;

m = H HmL = 4 619 125 044 072 654 358 130 582 367 647 205 982

References

[1] M.J. Mihaljevic, H. Imai, A family of fast dedicated one-way hash functions based on linear cellular automata

over GF(q), IEICE Trans. Fundamentals, vol. 82-A, no.1, pp.40-47, Jan. 1999

[2] M. Bedau, R.E. Crandall, and M. Raven, Cryptographic hash functions based on Artificial Life, manuscript, 2004

[3] R.C. Merkle. A Certified Digital Signature. In Advances in Cryptology - CRYPTO ’89 Proceedings, Lecture Notes

in Computer Science Vol. 435, G. Brassard, ed, Springer-Verlag, 1989, pp. 218-238.

[4] I. Damgård. A Design Principle for Hash Functions. In Advances in Cryptology - CRYPTO ’89 Proceedings, Lec-

ture Notes in Computer Science Vol. 435, G. Brassard, ed, Springer-Verlag, 1989, pp. 416-427.

