
A logic-based approach to cache
answerability for XPath queries

M. Franceschet and E. Zimuel

Dipartimento di Scienze

Università “G. D’Annunzio” Chieti - Pescara (Italy)

A logic-based approach to cache answerability for XPath queries – p.1/11



Contributions

1. We present a new method for the evaluation of XPath
queries with a logic-based approach with the aid of
cache mechanisms.

2. We make a thorough experimental comparions of the
following four evaluation techniques for XPath:

TopXPath
BottomXPath
CacheBottomXPath
Arb

A logic-based approach to cache answerability for XPath queries – p.2/11



TopXPath

TopXPath (Gottlob et al., VLDB 2002) rewrites the
original query into a Boolean combination of filter-free
paths (sequences of steps without filters).

Example:

π[φ] = /child :: a[descendant :: b/following :: c]

The query filter φ is rewritten by reading it from right to
left and inverting each axis:

ρ = self :: c/preceding :: b/ancestor :: ∗

Then the query π[φ] is evaluated as π ∩ ρ.

A logic-based approach to cache answerability for XPath queries – p.3/11



BottomXPath

BottomXPath (Franceschet et al., M4M 2005) rewrites
the original query into a modal formula and then
evaluates the formula bottom-up, that is, each formula
is evaluated after the evaluation of its subformulas.

Example: consider again the query

π[φ] = /child :: a[descendant :: b/following :: c]

the corresponding modal formula is

a∧ <parent> root∧ <descendant> (b∧ <following> c)

where tags are interpreted as atomic propositions (root
is a proposition that is true exactly at the tree root).

A logic-based approach to cache answerability for XPath queries – p.4/11



Arb

Arb (Koch, VLDB 2003) is an automata-based method.

The XML document is first converted into a binary tree
representation, then two deterministic binary tree
automata, one working bottom-up and the other one
working top-down, are generated from the query.

The evaluation is performed in two steps:
1. the bottom-up query automaton runs on the XML

binary tree;
2. the top-down query automaton runs on the XML

binary tree enriched with infos computed during the
bottom-up run.

A logic-based approach to cache answerability for XPath queries – p.5/11



CacheBottomXPath

CacheBottomXPath is a cache optimization of
BottomXPath that we proposed in this work.

The query is first converted into a modal formula and
then chopped into a set of subformulas.

Then, each subformulas, in bottom-up order, is
searched in the cache. If the subformula is found, no
evaluation is performed, since the result has been
already computed.

Otherwise, the subformula is evaluated and its result is
possibly stored in the cache.

The cache optimization is implemented using a hash
table where the keys are the formula strings.

A logic-based approach to cache answerability for XPath queries – p.6/11



Computational complexity

An analysis of the worst-case computational complexity
of the above four methods does not help much to
determine the most efficient evaluation strategy.

Let k be the query complexity and n be the data
complexity. On Core XPath, the worst-case complexity
of TopXPath, BottomXPath, and CacheBottomXPath is
O(k · n).

Instead Arb terminates in O(K + n), where K might be
exponential in k.

A logic-based approach to cache answerability for XPath queries – p.7/11



Experimental evaluation

To have a better understanding of the relative
performance of the methods under testing, we
conducted a probing experimental evaluation on
synthetic and simulated real data.

The main goals of these experiments are:
1. to understand the effectiveness of the cache

optimization in CacheBottomXPath;
2. to compare the performance of the top-down and

bottom-up approaches in TopXPath and
BottomXPath;

3. to test the scalability of the automata-based method
encoded in Arb when the query length grows.

A logic-based approach to cache answerability for XPath queries – p.8/11



Experimental evaluation (2)

We performed our experiments with XCheck, a
benchmarking platform for XML query engines that we
are demostrating in a demo session of VLDB.

For synthetic data we used MemBeR (Afanasiev et al.
XSym 2005) to generate XML documents and we
implemented a random Core XPath query generator
called XPathGen.

For simulated real data we used the benchmarks
XMark (Schmidt et al., VLDB 2002) and XPathMark
(Franceschet, XSym 2005).

A logic-based approach to cache answerability for XPath queries – p.9/11



Conclusion

The cache optimization is effective and should be
integrated in an optimized full-fledged XPath/XQuery
evaluator.

The top-down approach of TopXPath is more efficient
than the bottom-up approach of BottomXPath on
queries with high selectivity, while the opposite is true
on poorly selective queries.

When the query is relative small, Arb is efficient and in
fact the response times are independent on the query
length. However, when the query size grows, Arb is no
more scalable.

A logic-based approach to cache answerability for XPath queries – p.10/11



References

1. M.Franceschet, E.Zimuel Modal logic and navigational XPath: an experimental
comparison M4M (2005) 156-172

2. C.Koch Efficient processing of expressive node-selecting queries on XML data in
secondary storage: A tree automata-based approach VLDB (2003) 249-260

3. G.Gottlob, C.Koch, R.Pichler Efficient algorithms for processing XPath queries VLDB
(2002) 95-106

4. L.Afanasiev, M.Franceschet, M.Marx, E.Zimuel XCheck: A platform for benchmarking
XQuery engines VLDB (2006) http://www.xcheck.org

5. L.Afanasiev, I.Manolescu, P.Michiels MemBeR: a micro-benchmark repository for
XQuery XSym (2005) 144-161

6. A.Schmidt et al. XMark: A benchmark for XML data management VLDB (2002)
974-985 http://www.xml-benchmark.org

7. M.Franceschet XPathMark: an XPath benchmark for XMark generated data XSym
(2005) 129-143 http://www.sci.unich.it/~francesc/xpathmark

A logic-based approach to cache answerability for XPath queries – p.11/11

http://www.xcheck.org
http://www.xml-benchmark.org
http://www.sci.unich.it/~francesc/xpathmark

	Contributions
	TopXPath
	BottomXPath
	Arb
	CacheBottomXPath
	Computational complexity
	Experimental evaluation
	Experimental evaluation (2)
	Conclusion
	References

